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Abstract. The trace of the irvegular part of the dynamical matrix for ¢ = O constitutes a measure
7 of the LO-To splitting. Assoming that the lattice dynamics of the crystals under investigation
can be described by shell models, analytical expressions for §2 as well as the high-frequency
dielectric constants are derived for the large class of binary crystals with only one polarizable
ion type. The general theory is applied to the concrete cases of w-quanz (SiOz) and sapphire
(Al O3). Using the analytical expressions, it is shown how the Lo-T0 splitiing imposes strong
correlations on the model parameters. Particular attention is given to the scaling of the ionic
charge and high-frequency dielectric constant with the polarizability. This scaling behaviour
is detected, when comparing different shell models, used to describe the lattice dynamics of
o-guartz and sapphire.

1. Introduction

When {rying to describe the experimentally determined dispersion curves of a crystal by
phenomenological models one often encounters the problem that several sets of parameters
lead to comparable results. This is particularly true in the case of a-quartz (8iOz). A recent
study of the lattice dynamics of this crystat [1] showed that a large number of shell models
describe the dispersion curves about equally well [1]. The existence of this model variety
generally makes the interpretation of the mode! parameters a very fedious task and thus
prevents us from gaining deeper physical insight into the dynamics of the crystal under
investigation, This is, however, only true if the model parameters are uncorrelated. If, to
the contrary, correlations between the model parameters exist, the fact that there is a large
variety of models tums into an advantage, as it helps us to determine the nature of these
correlations, i.e. to establish mathematical relations in between the model parameters, on the
one hand, and specific agpects of the fitted data on the other hand, which permits us to explain
the observed correlations. Both in order to make sure that the encountered correlations are
statistically significant and also in order to determine the underlying mathematical relations
the largest possible number of models is desirable. As the determined relations are a common
property of the whole set of models and not only of a single member they constitute very
reliable pieces of information concerning the dynamics of the crystal.

In the case of e-quartz the most interesting parameters in the above-described context are
the ionic charge Z and the polarizability o of the Aypothedically free oxygen ion. Depending
on the short-range interactions, included in the shell-models, the values for Z and o range
from 1.4e to 2.0¢ and 0.8 A% to 1.9 A3 respectively. As can be seen in figure 1, the ionic
charge Z does not, however, vary randomly, but there is a sirong nearly linear correlation
with the polarizability . A similar behaviour is found for the high-frequency dielectric
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constant (see section 8), The aim of this paper is to describe the origin of these correlations
by giving analytical expressions for the functional dependence of the parameters and to
demonstrate how these analytical expressions can be used to obtain physical estimates of
the parameter values themselves,
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1 Figure 1. Jonic charge Z as a function of

12 3 the polarizability of the free oxygen ion & for

X 1 various shell models of a-quartz, The full line

1 —— e e is a least-squares fit through the data points. The
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As we will show, the central property of the dispersion relations in crystals like e-quartz
responsible for the comrelation of Z and o is the strong £O-TO splitting. Its investigation
constitytes the main subject of this paper. In order to get an analytical expression for the
functional dependence of the ionic charge Z on the polarizability @ we quantify the LO-
TO splitting for the general case of a crystal with several polar modes (section 2). This
quantification is achieved through the trace QZ of the irregular part of the dynamical matrix.
As the irregular part of the dynamical matrix can easily be separated for crystals with non-
polarizable ions, Q2 will first be calculated for rigid-ion models (section 3) yielding its
connection with the plasma frequency. In section 4 an analytical expression for 2 will be
developed for crystals with polarizable ions, starting from the concept of lattice dynarmical
shell models. The analytical expression will be investigated (section 5) in order to explain
the scaling of the ionic charge with the polarizability. The connection with the effective
charges (section 6) and high-frequency dielectric tensor (section 7) will be demonstrated.
The resulis will then be applied to the specific case of a-quartz (section 8) and sapphire
(section 9). We would like to stress that the obtained resuits are not limited o quartz and
sapphire, but are applicable to a large class of binary crystals.

2. Definition of a general measure of the L.O-TO splitting

In order to introduce notation, we briefly recall the origin of the LO-TO splitting. The
Fourier transform of the Coulomb potential on a crystal lattice is given by

4re?

Cotil0) = Y@+ helg + Oy (T @Tlcﬁ-g) expUGLd(K) — d(c'))). (1)

In (1} G denotes the vectors of the reciprocal lattice, » the volume of the primitive cell
and d(«) the position of the ion « within the primitive cell. Due to the term with G = 0
expression (1), and therefore the dynamical matrix, is not wel-defined at the zone centre,
ie. at ¢ = 0. This singularity leads to the splitting of the polar modes, which is known
under the names of LO-TC splitting or Lyddane-Sachs—Teller splitting. We will not go into
a discussion of the splitting itself, since this has been done extensively elsewhere {2].
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Through the following equation we define a matrix C* which we call the irregular part
of the Coulomb matrixj. The regular part, i.c. C — C*, is denoted by C.

4me’ gugp

Cepte 'y = 2T

. : 2)

Having defined the regular part of the Coulomb matrix €, the regular part of the dynamical
matrix D is obtained by replacing C by C in the definition of D.

In order to measure the LO-TO splitting quantitatively we need a scalar that
unambiguously characterizes the crystal. In particular, this scalar should not be a function
of the wave vector g. As the LO-TO splitting has its origin in the irregular part of the
dynamical matrix we are looking for a g-independent linear mapping from the vector space
of (3r x 3r) matrices into the real numbers, where » denotes the number of atoms in the
primitive celt of the crystal. As we will now show, such a mapping is achieved through the
trace of the irregular part of the dynamical matrix.

Let us amrange the ensemble of frequencies, belonging to a specific g-vector, in such a
way that they can be considered elements w(q) of a 3r-dimensional complex vector-space.
Due to the irregutarity of the dynamical matriz wi{q) is not defined at g = Q.

Considering first the case of non-polarizable ions, the dynamical matrix D can be written
as a superposition of a mechanical part, not involving long-range forces, and a purely
electrosiatic part. As the tace of the electrostatic part vanishes as a consequence of the
Poisson equation [3], the modulus of w(g) only depends on the mechanical part of D and
therefore shows no singularity at the zone centre.

Separating the dynamical matrix D into its regular and irregular parts, as outlined above,
we define the frequency vector w™8(g) which consists of the eigenvalues of only the regular
part of D. As this vector is well defined at g = 0 the following expression is a scalar quantity
independent of § and can therefore serve as a measure of the LO-TO splitting:

3r
Q=) (wi(@’ —o™(@" gl >0 3)
i=1
This quantity, which is identical to the trace of the irregular part of the dynamical matrix,
can be determined without diagonalization, An analytic treatment of 2, ie. the LO-TO
splitting, therefore becomes possible even for rather complicated structures. On the other
hand ©? is easily accessible experimentally.
3{r—1) .
2= (@ @ -%@) g0 )
i=1

For its evaluation one simply has to determine the longitudinal and transverse optic
frequencies for a chosen g direction, e.g. by infrared spectroscopyi.

f Note that we may always add a regular matrix to an imregular matrix and still end up with an trregular matriz.
Calling C” the iregular part of the Coulomb matrix is therefore only one of many possibilities. From a physical
point of view our choice (expression (2)) stands out as it can be cast into the form of a macroscopic field (see [21).
1t is this later property of C' which motivates our definition.

} Another way of characterizing the Lo~To0 splitting for general structures is by means of the generalized Lyddane~
Sachs—Teller relation §4,5]

3(r=1}
1_[ (@2 /0™ = ep/eue
1=1

It is unfit for our parpose because it contains ratios of frequencies making it necessary to diagonalize the dynamical
matrix. ‘
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As the above arguments are based on the harmonic and adiabatic approximation £ is
independent of § only if the optical modes show no damping. The damping of the modes
can be determined by fitting classical oscillators to the infrared reflectance spectra of the
crystal [6].

Damping is, however, not the only mechanism leading to a § dependence of £2. In most
crystals the main coniribution to the § dependence will be due to the polarizability of the
jons. The polanzability couples the electrostatic forces to the shori-range forces in such a
way that it is impossible to write the dynamical matrix D as a superposition of a mechanical
and clectrostatic part. Due to this coupling the short-range forces indirectly contribute to
the irregular part of the dynamical matrix. As a consequence, not only the dynamical matrix
D but also the trace of D becomes ill-defined at the zone-centre,

If @ as defined in (3) loses its scalar properties and becomes a function of 4 it can
no longer be employed as a measure of the LO-TO splitting. There is, however, a natural
extension of (3) which is based on the fact that 22(4) is a quadratic form in the components
of g (see section 6).

=
QUG = p ﬁzl 9eS2254p. (5)

The tensor £, has the same symmeiry as the dielectric constant. As the trace of this tensor
does not depend on the choice of the coordinate system it can be used as a measure of the
LO-TO splitting. It can be determined by applying (3) (o the three orthogonal directions of
g:

3 ) ,
Q= % Y Q.. (6)

3. Determination of £ for rigid-ion models

For rigid-ion models the irregular part of the dynamical matrix is given by

. 4 ] ’ »
D;rf;g(x,/c’)z me* Z(k)Z{K') Guqs

v JMOME) ‘ @

and therefore

dme’ I Z(k)?
v g M) ®

Q% =

If there are only two symmeically distinct lattice sites, as in the case of quartz, we can
rewrite (8) as follows:

$2
Q? = dg - - (9a)
“
with
1 riMyrM
= L_nMinMy {9b)
v M) +raMs

I 1
§:= ;rllzlei = ;rz,lZzeI (5c)
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and r; denoting the muktiplicity of the ith site in the primitive cell of the crystal. u is the
reduced mass density of the system and &7 is proportional to the mean squared charge.

The result obtained for © is identical to the one obtained for the plasma frequency of
the free electron gas, if we replace the mass density of the electron by w and the electronic
charge density by £. This is not surprising as we know that the frequencies of the transverse
modes are zero in the case of a free electron gas, due to the absence of restoring forces
for transverse motions. Therefore, in the case of a free electron gas, 2 is identical to the
frequency of the longitudinal vibration, i.e. the plasma frequency.

If §2 is known experimentally we can immediately determine the ionic charge if we
assume that our system can be described well by a rigid-ion model {7]. Using an alternative
approach and making additional assumptions expression (8) has been used by Scott [8] as
well as Gervais [9] to predict effective charges in ternary oxide compounds.

4. Determination of 2 for shell models

To evaluate 82 for shell models we have to isclate the irregular part of the dynamical
matrix. Since this involves the inversion of the matrix K+ 8 + YCY (see (10)) df:scnbmg
the shell-shell interactions, it can in general not be done analytically.

MD = (ZCZ + R) — (T + ZCY)(K + S + YCY)"{(T + ZCY)™., (10)

Here M stands for the mass tensor and R, T, S for the core—core, core—shell and shell-shell
short-range matrices respectively. Z is the ionic and Y the shell charge tensor; K denotes
the interaction of a core with its own shell. For a more detailed explanation of the single
terms of (10) see {21 and in particular [10]. Special attention must be given to the correct
inclusion of the respective self-terms.

An approximate expression in closed form for £ can be obtained for a large class
of crystals defined by the following properties. (i) The structure possesses only two
symmetrically distinct lattice sites. (ii) Only one ion type occupying these sites is polarizable
and the effective polarizability of this ion type is not strongly anisotropic. We will give a
precise mathematical definition of what we mean by effective polarizability in the following
discussion.

Examples of crystals belonging to this class are quartz (Si0s) and sapphire (Al;O3).

The analytic calculation of the trace of the irregular part of D, for the above defined
class of crystals, is made possible by the fact that the sums over matrix elements occurring
in the course of the calculation can be related to the self-terms of the respective matrices.
The self-terms in tumn can be expressed in closed form as functions of the model parameters.
The details of this procedure are rather involved and are therefore given in an appendix,

The final result is summarized in (11):

£? 4x " 1
@ =t 1| (Frer 2o~ e (g ) av
orf in a more compact form
2 _ 3.2
@ = 4;:’5—(1 Zvaer + v “‘ff). (12)
g\ 14 @n/ U)rpﬂieff
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The quantities £ and u have already been defined in (9); r, denotes the number of polarizable
ions per primitive cell. The term w.¢ can bg considered an effective polarizability and its
connection with the free polarizability is given by

et 1= (™' + @) (132)
with .

¢ = LTe(YI[FL (x, €) + [YCXI(k, ©)]Y ). (13b)

The (3 x 3) matrices FE {x, k) and [YéX]o(!C, k) are the self-terms of the short-range and
Coulomb shell-core interactions respectively.

The parameters v and y are simple scalar functions related to the trace and quadratic
norm of the seif-terms of the shell-core interactions respectively (see (A37) and (A52)):

= oy LT+ XCHlutes)  wel—rtls) (139
y2 o= 3qu2e2 T ;(Z[T + XCY luplk, & )) (13d)

where Z, ¥ and X are the fonic, shell and core charge of the polarizable ion. Note that
the ions are Iabelled such that the ones belonging to the non-polarizable type come first;
v and y can easily be calculated knowing the Coulomb coefficients and shott-range force
constants, We want to point out that this is a necessary condition for the later application
to concrete crystals.

When deriving expression (11), we have substituted the matrix YN™'Y, within the
subspace of the polarizable ions, by c.; multiplied by the unit matrix:

YN Ylaa(k, ) — areirbopbier- (14)
Expression (11) is therefore only exact if the matrix

N=K+F} +[YCX] (15)
is isotropic in this subspace, as in this case

(YN 1uplie, &) = OlofeBupir- (16)

As long as the polarizability of the hypothetically free ions o is small and not anisotropic the
matrix N will be dominated by the isotropic matrix K and condition {16) can be assumed
fulfilled in all cases. With increasing « the off-diagonal elements of N become more
important and (11) will deviate morc and more from the exact numerical values,

We now investigate briefly the single contributions to . The first conmibution is
identical to the one we obtained for rigid-ion models and just describes the unscreened
LO-TO splitting arising from the ionic charges. The second term is, due to its sign, a pure
screening term, i.¢. reducing the LO-TO splitting. It depends only on the ionic charge and
the effective polarizability.

The third contribution differs from the second only in that the factor r,/v in the
nominator is replaced by 2v. In contrast to /v, which is a constant wholly determined by
the crystal structure, v depends on the interaction potentials through the short-range part of
[FT + XCY1;. The long-range part gives only a constant contribution to v, determined by
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the crystal structure through the Coulomb coefficients. If we compare different models for
the same crystal, giving all comparable descriptions of the dispersion curves, it is reasonable
1o assume that the sum of the short-range forces in between the core of an unpolarizable
ion and the shells of the polarizable ions scales approximately with the corresponding sum
of the Coulomb forces, i.e. with Z - ¥, This is justified by the argument that short-range
and Coulomb forces are more or less independent of each other as they have a different g
dependence. In this case v does not depend on the model but only on the crystal structure
and the ratio of short-range to Iong-range forces. The sign of v is not generally positive,
so that we can not say a priori whether we are dealing w1th a screening or anti-screening
contribution, ie. with decreasing or increasing Q2.

The above argument can be taken over directly for the final contribution. It implies
that y also is more or less independent from the specific model-setp. The main difference
compared to the preceding contributions is its more complicated dependence on «. Besides
that, it stands out due to its sign: y, being always positive, has an anti-screening effect, i.e.
it increases Q°.

5. Scaling of ioni¢ charge with polarizability

Besides constants depending on the details of the crystal structure 2, as given by (11), is
determined on the one hand by ¢, v and ¥ and on the other hand by the polarizability o
and the ionic charge Z. As outlined above, v and y cannot be changed appreciably without
changing the description of the dispersion curves as they are determined by the ratio of
short-range to Coulomb interactions in the system. Treating ¢, v and y as parameters and
not as variables we invert

QP =QNZ, a; ¢, v, ¥) (17)
to get
Z=Z(: Q. 6, v, 7) = Z(@) (18)

where EZ},F denotes the experimental value of Q2. This means that we are looking for the
pairs of Z and « which give for a special set of ¢, v, y the &2 determined by experiment.
As (18} involves only quantities defined by the crystal structure and the general ratio of
short-range to Coulomb interactions it explains the high correlation of Z and « observed
when fitting shell models to experimental data. Examples of Z(w) are given in figure 2.
The calculation is based on the structure of o:-qi,lartz [1] and the values of ¢, v and y are
the ones found for the shell-models of w-quartz (sce table 1). All the curves show a more
or less extended region where Z scales linearly with &. The slope is given by the derivative
of Z(x) at « = 02

Z'(0) = 3 Z(O) (4 /v}rp + 2v]. (19

6. Connection with the effective charges

Using the dielectric function approach the irregular part of the dynamical matrix for a cubic
system can be expressed in the form [11]

e 4né ,
MDY ,fc'):v—’;";(z yz=“”(fc>) ew’(q,q)(qu f,f(x)). 0)
Y
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Z (o) 0=0; v=0.22: w035 Z,(ak 0=0.0; v=0.00; 1=0.35;
Za(a): $=0; v=0.22; v=0.22; Z4{a): 0=0.2; v=0.22; v=0.35;
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Figure 2. Z(x) for selected values of the parameters ¢,
v and y. The parameters used for curve Zs comespond
ot - L L to the lattice dynamical shell models of @-quartz [1).
0 0.5 1 15 The region close to the origin is shown enlarged in the
“&(Angstrom’) ’ lower figure.

It has been shown by Sham [11] that the components of the charge tensor fulfill the following

sum rule, which also constitutes a necessary condition for the existence of the acoustic
branches:

Yz =0 . 21)

Calculating the trace of (20) using (21) we get for binary crystals

dme’r,
Q= ——L(ZMe(q, @ (22)
vk
with Z° the effective charge of the polarizable ion.
As Q and e are known experimentally (22) immediately yields the effective charge for
binary systems.,

For more complicated structures where €,z is not isotropic (22) has to be replaced by
4ze® 1 2

T -1 E - z : eff . 23
u e (c0) — M{x) < (Zea®) @)

Although the sum rule holds also for these crystals the wace cannot be expressed in the
simple form of (22) due to the off-diagonal elements of the effective charges.

Q2 =

7. High-frequency dielectric constant

As the effective charges depend in a complicated way on the model parameters, (22) cannot

be used to determine the relation of the high-frequency dielectric constant €(co) and the

model parameters. As the high-frequency dielectric tensor for a shell model is given by
4ret

v

€aplo0) = 1+ —— [¥ (S + YT ¥]op(kr) (24)

KK’
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it can, however be calculated directly, analogous to Q2. If the substitution (14) is a valxd
approximation, this leads us to

) ,
e(c0) = 1+ —:—rpacff. 25)

In the case of a cubic diatomic system with no short-range forc_es acting upon the shells
the effective polarizability is given by et = (¢! — 4r/3v)"!. Assuming that the shell
charge Y is equal to the ionic charge Z, (25) reduces to the well known Clausius—Mossotti
relation: -

€(o0) — 1 _ 4w

o) +2 300 (26)

As the effective polarizability is a scalar it is immediately obvious from (23) that in
our approximation the dielectric tensor has to be isotropic. The experimentally determined
anisotropy of €, must therefore be very small for our results to be applicable. A zero
anisotropy of €., on the other hand, is not sufficient to conclude that (14) is valid.

8. Application to quartz

We will now apply the above developed formalism to the lattice dynamics of ¢-quartz. -
quartz is a particularly good candidate as its dispersion relations can be very well described
by various shell models differing appreciably in their short-range as well as Coulomb
interactions.

In table 1 we list in columns 2-6 the values of v, ¢, y together with the charge and free
polarizability of the models. The rest of the parameters for the models SM(1} to SM(4)
can be found in {1]. In columns 7 and 8 we compare the value of Z&Y(Q) as determined
by using the analytical expression (11) to the exact value of ZR($2) as determined after
diagonalization of the dynamical matrix. ZX(Q) is defined through (9), i.e. it is the charge
tequired to yield Q7 in the case of a rigid-ion model. In column 9 we give the value of
{00,

Table 1. Parameters for the models SM(1) to SM(8).

Model  vA)2  #hP yAD Ze «BP ZMe)  ZFE o)

SM(1) 0.21 -0.04 0.44 1.49 0.88 1.04 1.0 1.62
SM(2) 0.23 0.08 0.44 1.85 1.39 1.17 1.12 1.96
SM(3) 022 . 007 041 179 1.20 1.15 1.14 185
SM(4) 0.22 0.09 0.41 2,00 1.86 L.17 1.13 2.36
SM(5) 0.29 0.28 066 1.32 064 - 104 108 1.39
SM(6) 0.22 0.07 0.42 1.80 1.22 1.15 1.14 1.86

By comparing columns 7 and 8 we realize that the analytical resulis are in close
agreement with the numerical ones. This means that the error induced by (14) is very small
and the tesults of sections 4-7 can be fully applied to the latiice dynamical investigations
of q-quartz.

Concerning the parameters v, ¢, ¥ we see that they are more or fess model-independent
as expected. Concentrating on v this implies that for ail our modeis the shori-range and
Coulomb interactions between oxygen shells and silicon ions always coniribute in the same
ratio ¢, to the trace of the self-term of the oxygen shell. This entails a strong correlation of
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the product of ionic charge Z times shell charge ¥ on the one hand, and the longitudinal
and transverse force constants in between silicon ions and oxygen shells on the other hand.
Knowing the Coulomb coefficients for the quartz structure and averaging over all our models
we get ¢, = ~1.92 £ 0.05.

The fact that v and y are more or less independent of the model and the rather small
value of ¢ explains the linear scaling of the ionic charge Z with the polarizability of the
free ion o (se¢ figure 1) as outlined in section 5. The slope of Z(c) is correctly predicted
by (19}, using the experimental value for Z® = 1.15¢ and the value of ¢, given above.
This means that the LO-TO splitting in «-quartz is reproduced correctly only by shell models
having a well defined Z{«) determined basically by the constant ¢,. All other parameters
have a minor influence on 2. The interactions between the oxygen shells, for example. do
not enter at all the analytic expression derived for Q2.

The investigation of the LO-TO splitting alone is insufficient to predict the values of the
ionic charge Z and polarizability «. If we require, however, that the model also comes up
with the correct value for the high-frequency dieleciric constants we can determine both
the ionic charge Z and polarizability « through (12) and (25). With the exception of e(o)
for ¢ = 1.86A3, (25) is very well satisfied by the dielectric constants derived from our
models, as can be seen in figure 3, even if we replace o by o, The latier is not surprising
given the small value of ¢ (see (13)). Using (25) in conjunction with the experimental
value for €(o0) = 2.37 [12] we predict that the effective polarizability o, in «-quartz has
avalue of 1.8 +£024°. Taking the average value for ¢ this corresponds to a polarizability
@ of 2.0 + 0.2A°. Having determined the value of w.; we can use (12) to predict the
charge of the oxygen ion. The value obtained lies very close to 2Ze. It is actually the
above analysis leading to model SM(4) that we consider to best describe the overall lattice
dynamics of x-quartz while at the same time reproducing the experimental value of the
dielectric constant.

2.4 T
22 F ]
2.0 . 3
18 2 :
£ -
1.8 -
14 [ 3
L. [=]
1.2 | -
- ( . | | b Figure 3. ¢, (o0} as a function of o (full
1.0 " . '05' — ] I ——— '2 s circles) and of & (open squares) for the shell
' oo [ }35 2 N models of a-quartz [1]. €™ (8g) according to
" et (25) is given by the full line.

Our results do not support the inclusion of an anisotropic free polarizability into our
models as this would in most cases lead to an anisotropy in the dielectric tensor which is not
observed experimentally. In fact, no substantial improvement of the fits could be achieved
by allowing for an anisotropic free polarizability.

9. Application to sapphire

In the case of sapphire (Al;O;) all the shell models we fitted to the experimental dispersion
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curves gave aboul the same value for the ionic charge, Z = 1.510.1¢, and free polarizability,
@=072014 [13]. These models do not, however, reproduce the experimental value of
€xx{c0) = 3.2 and €:.(00) = 3.1 [14].

By sacrificing a best fit to the dispersion curves we optimized various models
with the value of the free polarizability of the oxygen ion o fixed in between 0.7A°
and 2.0A°. Investigating these models, we find that the anisotropy of the self-term
FI (k. ) + [YCX)o(x, k) is very small for all of them and the parameters v and y entering
(12} are practically zero. The analytical results of sections 4~7 are therefore fully applicable
to sapphire. The zero values for v and y imply that the short-range contributions to the
self-term arising from the interactions in between aluminium cores and oxygen shells cancel
the corresponding Coulomb contributions. It should be noted that this cancellation is not
required by symmetry and therefore reflects the distribution of forces acting in the crystal,
Using the terminology of the preceding section, we get ¢, = —1.0 % 0.05 for sapphire in
comparison to ¢, = —1.92 + 0.05 for ¢-quartz, As v is vanishing, ¢ is solely determined
by the Coulomb coefficients (¢ = 0.2955X/Y) and therefore negative as long as the core
charge X of the oxygen ion has the opposite sign of the shell charge ¥. This means
according to (13) that the effective polarizability .x is larger than the free polarizability «,
in contrast to what we have found in a-quartz.

As can be seen from figore 4, (23) is well satisfied by the dieleciric constants €(o0)
calculated from the models. In order for the models to reproduce the experimental value
of €(c0), the effective polarizability a,.; must be close to 2.7+ O.2A3. Inserting this result
into (14) and using the experimentally determined value of Q2 we get for the ionic charge
of the oxygen jon in sapphire Z = 2.0 & 0.2¢. As the shell charge for all our models
Y = 2.9+ 0.1¢ we can also determine the free polarizability of the oxygen ion required
to reproduce both the right magnitude of the LO-TO splitting as well as the right dielectric

constant 1o be o = 1.9 + 0.24°

4.0 e
35 b
3.0 F
2.5
20 F
15 £

1.0 F

el Lo e by ol ety ety ol

.5 - Figure 4. ¢, (00) as a function of o for
-0.5 0 05 1An1.5 23 25 3 35 the shell models of sapphire [13]. &™{oa)
a’eff[ gstrom’] according to (25) is given by the full line.

The results for the free polarizability and the ionic charge of the oxygen ion in sapphire
are identicat to the ones obtained for -quartz. The large difference in the dielectric constants
of the two crystals is solely due to the different structures and shori-range interionic
potentials. These results compare also very well with other oxides, like the perovskites
(see [15] and references therein).
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10. Conclusion

We have shown that an analytical treatment of the LO-TO splitting and the high-frequency
dielectric constants in complex crystals like o-quartz and sapphire is possible and constituies
a powerful tool to extract information about charges and polarizabilities as well as the
correlations of the shell model parameters. This information is the more valuable as it is
not based on a single lattice dynamical model but on their common characteristics.

It turns out that the self-term associated with the shell-core interactions plays the
dominant role in the determination of the LO-TO splitting.

In this way we have found that both in sapphire as well as in ¢-quartz the ionic charge
of the oxygen ion is very close to 2e paired with a free polarizability of about 1.94°,
The charge as well as the polarizability are strongly correlated with the model parameters
entering the self-term of the core—shell interactions and an analytical expression for this
correlation is given. The results are based on the assumption that the lattice dynamics of
quartz and sapphire can be described by shell models, however, without reference to any
particular model.
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Appendix. Derivation of (11)
In order to facilitate notation we rewrite the dynamical matrix given in (10) in the form
D=(ZC'Z+R) ~ (T+ZC'NK+S+YC'YI"T+ZCY)*  (AD

where we have redefined the matrizes R, T and S by including the regular part of the
corresponding Coulomb interactions:

R:=R+2CZ {(Ala)
T:=T+XCY (Alb)
S:=8+YCY (Alc)

where € denotes the regular and YC* the frregular part of the Coulomb matrix. The gauge
we choose such that the regular part of the dynamical matrix is given by

D* =R - T(K+S)"!IT+ (A2)

as only in this case is (3) is identical to (4). Instead of treating the irregular part of the
dynamical matrix as a whole we split it up into three parts defined as follows;

D! ;= ZC'Z — (ZC*'Y)K + S + YC'Y]"L(YC*2) (A3a)
DV:= —TIK+S+ YC'Y]"!(YC*Z) + HC (A3b)
D= —TK + 8 + YC'V)~! — (K + 8)~1T™. (A3c)
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The calculation of the trace of these expressions can generally not be done analytically as
it involves the inversion of (K + S + YC*Y). We will show that under certain conditions in
order 1o calculate the trace of expressions (A3} the matrix (K+8+YC*™Y)~! can simply be
replaced by (N4 YC*Y) ! and that the matrix (N - YC*Y) ! can be calculated in closed
form:

N=K+F} +[YCX], . (A4)
with
[YCKlouglk, ) = =8 k') YY)D 4tk k", LINX(K").  (AS)
(e ) #e D)

where F} denotes the self-term of the short-range interactions between shells and cores.
The starting point of our calculations is the identity

(K+8+YCY) ! =(N+8°+YCY)!
= (N+YC'Y)"! — (N+ YC*'Y)"!S5[N + YC'Y + §51~! (A6)

with
' S5 := 8 —F] —[YCXs. (A7)

Let us first investigate the matrix (N+ YC*Y)~! | As we are treating only the case of one
polarizable ion type (N 4+ YC*Y)™! is of the form

vt {00
N+ YCY)-! = (0 M_l) (48)
with M~! being a matrix of rank ry. It is therefore sufficient to consider only M~!. If the

terms in (A4) are isotropic, and if we do not include an anisotropic free polarizability in
our models, then

—igv-1 _ (0 0
Y-'NY _(0 x—IE.’-}rP) (A9

where we denote the unit matrix of rank / by E;.
As the elements of YC*

4 et
a:=Cie, k) = Al0
do not depend on « it is straightforward to calculate M~1:
1 "
~l = —1)* Det(M, ; All
7 = Doy V' DetM;) (Al1)
with
Det(M) = x ™% + 3r,ax =%t (Al2a)
Det(M;;) = x~"** +.3(r, — Dax =%+ (A12b)

Det(M;j) = (=1 Hilgy™3m+2 £ (AlZ)
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leading to
M= !
x 3 +3rpax—3rp+l
-3+l + (3"[: - 1)ax—3rp+2 —gx=in+l _ax—3rp+2
X
. . x~3rp+l + (3,_]} — l)ax—3rp+2
x + (3rp — Dax? —ax? . —ax?
_ 1 —ax? X+ (3rp — Dax? . —ax?
L+ rpax .

x4+ (3rp.— Dax?
(A1)

where for convenience we have chosen a coordinate system such that § = 1/4/3(1, 1, 1),
If N is not of the form (A9), the result can be generalized in such a way that the form
of M~! is preserved, i.c. M~} can still be written as

M =X+H (Al4)

with all the elements of the (3r, x 3ry)-matrix H being identical and with X being diagonal

in . The (3 x 3)-submatrices of X are, however, no longer multiples of the unit matrix as
is the case for expression (AI3).

We will use (A13) to calculate the trace of D!, which for this purpose we transform as
follows:

D' =2ZC'Z — (ZC*YHN + YC'Y)"'YC'Z
+ (ZC*Y){N + YC*Y)'S5[N + YC*Y + §5171¥C 2, (A15)

As the elements of YC* do not depend upon « the product YC*A is zero for all (37 x 3r)-
matrices A fulfilling the condition

> Auplic, i’y = 0. (A16)
K =1

Therefore
YC'YSS = 0. (A17)

In order to apply (A17) to (A15) we have to commute (N 4+ YC*Y)~! either with ZC*Y)
or with 8%. As YC*Z is of the form

ey {0 O
vc:z_(lal Bz) (A18)

with both By as well as B; not equal to zero it does not commute with (N -+ YC*Y)~L, We
are therefore obliged to calculate the commutator

Csv = [S°, (N4 YC'Y) ], (A19)

sS — ( g SQS) (A20)

As
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where §% commutes with N=!, if 5 commutes with M~!. Using (A14), and knowing that
H commutes with any symmetrical matrix, we get

sn = [S°, X1 (A21)

As 8% depends on the specific model used Csy in general is only zero if X is a multiple of

unity due to the symmetry of the crystal. In all other cases we get a result in closed form

only by working in the following approximation. :
Let

ag = 3——'I‘r(Y MY~ (A22)

As a does not depend on «
az = 1T (Y Mk, )Y ) = (@ + ¢) (A23)
with an arbitrary « chosen among [r —rp, rl; ¢ is given by
¢ 1= LTr (Y7'IFT (k, ) + [YCXio (e, )Y ). (A24)

By replacing N with Yo 3} Y the matrix (N + YC*Y)~! is given by expression (A13) if we
identify x with o. In principle we can always choose an anisotropic free polarizability
0,5 (i) such that

Yo' 'Y + N = Yo ' Es, Y. (A25)

For this kind of model the analytical expressions we are going to derive are cormect.
Summarizing our resnlts so far, we have shown that the third term of (Al5)

(ZC'Y)(N+ YC'Y) 'SSIN+ YC*Y + 851"'YC*Z _ (A26)
vanishes if Csy is zero. As the first term
drer Z(K)Z(k") qugp

ZC*Z, 5k, k') = T - (A27)
is known explicitly we are left with the expression

ZC*YYN +YC*Y)"!YC*Z. ' (A28)
As in the chosen coordinate system the elements of C* are all identical to a (A10)

C*AC* = a*yH (A29)
with

oy = E Ai. (A30)
L)

Taking into consideration the special form of YC*Z (A18) as well as the atomic masses we
get for (A28) with the help of (A13) and (A29)
2 ? r
Dis("v ) = dme ( ZZ(k) /v )z Z() Oleft Zk )’ )
v \ /MM = VMK 1+ Zryag /MK
_4we® Z(VZ(K') (I _ Ar/v)rpter )
% VMM K) 1+ (4 /v)rpee )

(A31)
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Calculating the trace yields

2 ﬁ( _ (4K/U)rpaeff ) AP
U=t T o) (432

The second contribution to the irregular part of the dynamical matrix, i.e. (A3Db), in an
analogous fashion to (A3a) can be cast into the form

D1 = _T[N+ YC*YI(YC'Z) + HC. (A33)

Caiculating the product of the two matrices to the right and using of (A13) and (A18) we
get

[N + YC*YY Y C* Z)ap(k, k') = Rk Z(")840205: (A34)
with
Rix)y=0 k€[l r—r

_ (4o fv)atess
T 14 (A et

{A35)

R{x) (1)~ kelr—r+1rl

where we have changed the coordinate system such that § = Z. Equation (A35) substituted
into (A33) leaves us with

Dgﬂu:, &) = —47” (Z(sc’) Z Tk, fc")ﬂ(sc”)ﬁz,g) ~+ HC. (A36)

&

As we are only interested in the trace of DY it is sufficient to carry out the summation in
{A36) for the diagonal elements. This task is again facilitated by the translational symmetry
of the system. Let us first investigate the case when « represents an ion of type 1. As the ions
of type I are non-potarizable they possess no shells and the sum in (A36) involves only the
interactions of the cores of type I with the shells of type I. The sum in (A36) is therefore
proportional to the negative self-term of FT 4+ XCY for this special x. In the case of «
representing an ion of type II there are contributions to the sum from the interactions of the
corresponding core with all the shells, plus the interactions of the comesponding shell with
the rest of the shells, But as in this case the summation also covers the diagonal element
Tua (ki) all the off-diagonal contributions to the sum are cancelled by the corresponding
ones of the self-term [FT + YCX]y. Only the contributions to [FT + YCXJy arising from

the interaction of the shell « with the cores of all the non-polarizable ions remain.
As the trace

Trz T, &) = Z Taalx, k')
i k'

is invariant under orthogonal transformations it depends only on the ion type but not on «,
This allows us to define a constant v such that

%Erw(x, K"y =1 —

- rp

ZYety ke[l r—rl (A37a)

P

1
3 Y Tualie, ') =t Z¥ ey kelr—rg+1,r1 (A37b)
Ko
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Here Z and ¥ are the ionic and shell charge of the polarizable ion respectively. The
definition of v through (A37a) and {(A37b} is unique due to the identity

r—r r—mn
ZP Z Tap(k, ') Z ZP Tpalic, &) (A37¢)
=1 g'=r—rp-+l emr—mp+] ' =1

Averaging over the cartesian coordinates leads to the final result

52 —2Ua:ff .
92 = 4 A38
n=ty (1 ¥ (4n/v)rpmeﬁ) (A38)

In order to calculate the third contribution to £
DY =T[(K+S+YC'Y) ! —(K+9 T+ : (A39)
we use an identity analogous to (AG):

(K+-S+YCY) ! = (N+S*+YCY)"! = N-! = N-I(S° + YC'Y)[N + YC*Y + S5,
(A40)

Equation {(A6) applied to (A40) gives

K+S+YCY) ! = —N" S5+ YC'YHN+ YC'Y)~ I + N 185+ YC*'YHN + YC'Y)
x S N+ YO Y + 85T £ N-L, (Ad1)

If Cgy is zero this expression can be simplified using (A17):

K+S+YC'H ! = -N1(8° + YO'H(N + YC*'Y) !
+NISS(N+ YC'Y) 'SSIN+ YC'Y + 851 L + N1, (A42)

Applying again (A6) we find

(K+8+YCY)™ = —NT(YCV)(N+ YOV~ + NS’ N+ YC'Y + S5 + N1
(A43)

Transforming the second part of (A43) according to

(N+YC'Y+SH ! = (N+ S5 T+ [(IN+YCY + 851 — (N + 851 (Ad4)
and using
N+ YC'Y + 851 — (N4 8%)"! = —(YC*V)[(N + S5)(N + YC*Y -+ §H! (A45)

together with (A17) leads to

N NTISSINLYC Y+ S5 =N — -lsS[N+sSr =MN+8H! = (K4-8)L.
(A46)

Therefore

(K+S+YCY)™' = —N- ‘(YC*Y)(N+YCY) +(K+8) (a4
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substituted into (A39) gives

DT = —TN-Y(YC*Y)(N + YC*Y)~!T™. (A48)
With the help of {A34) we calculate
[IN"U Y C*YUN + YC* Y)Y ap (e, k) = v/ ROV (K )0z 38 (A49)

with now
{4/ 1))oz,ffL y-2
1 =+ {4 fvdrpoeg
N) =0 otherwise.
For the elements of the matrix {A48) we get in the coordinate system with § = 2

(Z Tua (K, " /R (k") )(Zw/xw Th{k", x7)). (AS1)

= =

Rik) 1= kKElr—ro+1,r]

{A50)

The terms arising when calculating the trace of (AS1) are therefore proportional o

1 N\
'}flz = W Z(Z’ Tmﬁ(lc.. K )) K € [1, r "—rp] (ASZa)

Vi = 1oy 42(2 Tup (k. x)) kelr—r,+1.r]  (A52b)

where we have again averaged over three orthogonal directions; y, and j» do not depend
on « as the sums on the right are nothing else but the squares of the canonical norm of
(3 x 3) matrices and are therefore invariant under orthogonal transformations. Note that

the ratio of ¥ to ¥, depends on the specific setup of the model. To get a formally similar
result to £2; and @y we define ¥ = f(y,, yu) such that

Ez 1
2 — 2 ——e -
QTH = 4ot =~ (¥ Otefr) ( 7@ /U)I‘pcteff) . (A53)

Summarizing the partial results (A32), (A38) and (A53) we get the final expression
§? 4r ) ( 1 )}
=dr 11— | —rp+2 - _— | AS54
"u [ [( et ”) e = (y o) ] 1+ Gn/o)rpaa (B39
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