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Ahtract The mce of the irregular pur of the dynamical maeix for q = 0 constitutes a measure 
@ of the m m  splitting. Assuming that the lamce dynamics of thc cwtals under investigation 
can be described by shell models, analytical expressions for Q as well as the high-frequency 
dielectric constants are derived for the large class of binary crystals with only one polarizable 
ion type. The general theory is applied to the concrete cases of =-quartz (Si%) and sapphire 
(A1203). Using the analyhcal expmsians, it is shown how the u2-m splitting imposes simng 
correlations an the model parameters. Particular diention is given to the scaling of the ionic 
charge and high-frequency dieleclric constant with the polarizability. This  scaling behaviour 
is detected. when mmparing different shell models. used to describe the lattice dynamics of 
e-quartz and sapphire. 

1. Introduction 

When Uying to descrik the experimentally determined dispersion curves of a crystal by 
phenomenological models one often encounters the probIem that several sets of p m e t e r s  
lead to comparable results. This is particularly m e  in the case of aquartz (302). A recent 
study of the lattice dynamics of this crystal 111 showed that a large number of shell models 
describe the dispersion curves about equally well [I]. The existence of this model variety 
generally makes the interpretation of the model parameters a very tedious task and thus 
prevents us from gaining deeper physical insight into the dynamics of the crystal under 
investigation. This is, however, only me if the model parameters are uncorrelated. If, to 
the contrary, comlations between the model parameters exist, the fact that there is a large 
variety of models turns into an advantage, as it helps us to determine the nature of these 
correlations, i.e. to establish mathematical relations in between the model parameters, on the 
one hand, and specific aspects of the Etted data on the other hand, which pennits us to explain 
the observed correlations. Both in order to make sure that the encountered correlations are 
statisticalIy significant and also in order to determine the underlying mathematical relations 
the largest possible number of models is desirable. As the determined relations are a common 
property of the whole set of models and not only of a single member they constitute very 
reliable pieces of information concerning the dynamics of the crystal. 

In the case of aquartz the most interesting parameters in the abovedescribed context are 
the ionic charge 2 and the polarizability a of the hypothetically free oxygen ion. Depending 
on the short-range interactions, included in the shell-models, the values for Z and a range 
from 1.4e to 2.0e and 0.8 li' to 1.9 A3 respectively. As can be seen in figure 1. the ionic 
charge Z does not, however, vary randomly, but there is a strong nearly linear correlation 
with the polarizability a. A similar behaviour is found for the high-frequency dielectric 
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constant (see section 8). The aim of this paper is to describe the origin of these correlations 
by giving analytical expressions for the functional dependence of the parameters and to 
demonstrate how these analytical expressions can be used to obtain physical estimates Of 
the parameter values themselves. 

2.2 , I 

I .8 2 l  /i 
Figure 1. Imie charge Z a8 a limnion of 
the polarizability of the free oxygen ion a for 
various shell models of a-qUara. ?he full h e  
is a least-squares fit through the data points. The 

-0.5 0 0.5 1 ~ 1.5 2 slope of the line is 0.57e8;3 and Z(u = 0) = 

z [ e l : : : /  , /  , , , I  
1.2 

, ,  , , . . I . .  I . , . , , .  

m[Angstrom3I 1.03e. 

As we will show, the central property of the dispersion relations in crystals liie @quartz 
responsible for the correlation of Z and CY is the strong LO-TO splitting. Its investigation 
constitutes the main subject of this paper. In order to get an analytical expression for the 
functional dependence of the ionic charge Z on the polarizability 01 we quantify the LO- 
TO splitting for the general case of a crystal with several polar modes (section 2). This 
quantdication is achieved through the =ace Q2 of the irregular part of the dynamical matrix. 
As the irregular part of the dynamical matrix can easily be separated for crystals with non- 
polarizable ions, Q2 will Jim1 be calculated for rigid-ion models (section 3) yielding its 
connection with the plasma frequency. In section 4 an analytical expression for Q2 will be 
developed for crystals with polarizable ions, starting from the concept of lattice dynamical 
shell models. The analytical expression will be investigated (section 5 )  in order to explain 
the scaling of the ionic charge with the polarizability. The connection with the effective 
charges (section 6) and high-frequency dielectric tensor (section 7) will be demonsmed. 
The results will then be applied to the specific case of a-quartz (section 8) and sapphire 
(section 9). We would liie to stress that the obtained results are not Limited to quam and 
sapphire, but are applicable to a large class of binary crystals. 

2. Definition of a general measure of the Lo-TO splitting 

In order to introduce notation, we briefly recall the origin of the &TO splitting. The 
Fourier transform of the Coulomb potential on a crystal lattice is given by 

In (1) G denotes the vectors of the reciprocal lattice, IJ the volume of the primitive cell 
and d ( ~ )  the position of the ion K withiin the primitive cell. Due to the term with G = 0 
expression (I), and therefore the dynamical m e ,  is not well-defined at the zone centre, 
i.e. at q = 0. This singularity leads to the splitting of the polar modes, which is known 
under the names of L C T O  splitting or LyddaneSachs-Teller splitting. We will not go into 
a discussion of the splining itself, since this has been done extensively elsewhere 121. 
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Through the following equation we deline a ma!xix C* which we caU the irregular part 
of the Coulomb matrixt. The regular part, i.e. C - C’. is denoted by C. 

Having defined the regular part of the Coulomb matrix C, the regular pan of the dynamical 
mahix D is obtained by replacing C by C in the definition of D. 

In order to measure the u3-m spliaing quantitatively we need a scalar that 
unambiguously characterizes the crystal. In particular, this scalar should not be a function 
of the wave vector q. As the &TO splitting has its origin in the irregular part of the 
dynamical mahix we are looking for a q-independent linear mapping from the vector space 
of (3r x 3r) matrices into the real numbers, where r denotes the number of atoms in the 
primitive cell of the crystal. As we wiU now show, such a mapping is achieved through the 
trace of the irregular part of the dynamical mahix. 

Let us anange the ensemble of frequencies, belonging to a specific q-vector, in such a 
way that they can be considered elements w(q) of a 3r-dimensional complex vector-space. 
Due to the irregularity of the dynamical matrix w(q) is not dekned at q = 0. 

Considering first the case of non-polarizable ions, the dynamical matrix D can be written 
as a superposition of a mechanical part, not involving long-range forces, and a purely 
elecrrosrufic part. As the trace of the electrostatic part vanishes as a consequence of the 
Poisson equation [31, the modulus of w(q) only depends on the mechanid part of D and 
therefore shows no singularity at the zone centre. 

Separating the dynamical matrix D into its regular and irregular parts, as outlined above, 
we define the frequency vector whg(q) which consists of the eigenvalues of only the regular 
part of D. As this vector is well defined at q = 0 the following expression is a scalar quantity 
independent of and can therefore serve as a measure. of the u3-TO splitting: 

1. 

This quantity, which is identical to the trace of the irregular part of the dynamical matrix, 
can be determined without diagonalization. An analytic treatment of C?, i.e. the LO-TO 
splitting, therefore becomes possible even for rather complicated smctures. On the other 
hand Q2 is easily accessible experimentally. 

3ir-I) 

Q2 = ( o ! O ( q Y  - oY(d2) IpI + 0. (4) 
i d  

For its evaluation one simply has to determine the longitudinal and transverse optic 
frequencies for a chosen q direction, e.g. by in- specuoscopy~. 

t Note that we may always add a regular mavin to M irregular matrix and still end up with an irregular matrir 
Calling C‘ the irregular part of the Coulmb matrix is therefore only one of many possibilities. F m  a physical 
point of view our choice (expression (2)) stands out as it can be cast into the form of amacroscopic field (see [?,I). 
It is this later pmperty of C’ which motivates DUI definition. 
t Another way of characterizing the m m  splitting for generd stll lcplles is by means of Ihe generalized Lyddane- 
Sachs-Teller dation [4,5] 

3(r-1) 

,=I 
n ( 6 J ’ l o / P ) 2  = e 3 0 / E w .  

It is unfit for OUT purpse because it contains ratios of frequencies d i n g  it necessary to diagonalize the dynamical 
matrix. 
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As the above arguments are based on the harmonic and adiabatic approximation S2 is 
independent of 4 only if the optical modes show no damping. The damping of the modes 
can be determined by fitting classical oscillators to the infrmd reflectance spectra of the 
crystal [6].  

Damping is. however, not the only mechanism leading to a G dependence of S2. In most 
crystals the main conhibution to the 4 dependence will be due to the polarizability of the 
ions. The polarizability couples the elecmstatic forces to the shon-range forces in such a 
way that it is impossible to write the dynamical manix D as a superposition of a mechanical 
and electrostatic part. Due to this coupling the shon-range forces indirectly contribute to 
the irregular part of the dynamical mahix. As a consequence, not only the dynamical matrix 
D but also the trace of D becomes ill-defined at the zone-centre. 

it can 
no longer be employed as a measure of the LO-TO splitting. There is, however. a natural 
extension of (3) which is based on the fact that Q2(@) is a quadratic form in the components 
of q (see section 6):  

If S2 as defined in (3) loses its scalar properties and becomes a function of 

The tensor Q.6 has the same symmehy as the dielecaic constant. As the trace of this tensor 
does not depend on the choice of the coordinate system it can be used as a measure of the 
&TO splitting. It can be determined by applying (3) to the three orthogonal directions of 
4: 

3. Determination of 

For rigid-ion models the irregular pm of the dynamical matrix is given by 

for rigid-ion models 

and therefore 

If there are only two symmehically distinct lattice sites, as in the case of quartz, we can 
rewrite (8) as follows: 

with 
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and ri denoting the multiplicity of the ith site in the primitive cell of the crystal. p is the 
reduced mass density of the system and f 2  is proportional to the mean squared charge. 

The result obtained for Q is identical to the one obtained for the plasma frequency of 
the free electron gas. if we replace the mass density of the electron by f i  and the electronic 
charge density by e. This is no1 surprising as we know that the frequencies of the uansverse 
modes are zero in the case of a free electron gas, due to the absence of restoring forces. 
for msverse  motions. Therefore, in the case of a free electron gas, Q is identical to the 
frequency of the longitudinal vibration, i.e. the plasma frequency. 

If Q is known experimentally we can immediately determine the ionic charge if we 
assume that OUT system can be described well by a rigid-ion model [7]. Using an alternative 
approach and making additionaJ assumptions expression (8) has been used by Scott [8] as 
well as Gervais [9] to predict effective charges in ternary oxide compounds. 

4. Determination of fl for shell models 

To evaluate Q for sheU models we have to isolate the irregular part of the dynamical 
matrix. Since this involves the inversion of the marrix K + S + YCY (see (IO)) describing 
the shell-shell interactions, it can in general not be done analytically. 

MD = (ZCZ + R) - (T + ZCY)(K + S + YCY)-'(T+ ZCY)'. (10) 

Here M stands for the mass tensor and R, T, S for the corecore, coreshell and shell-shell 
sholt-range mauices respectively. Z is the ionic and Y the shell charge tensor; K denotes 
the interaction of a core with its own shell. For a more detailed explanation of the single 
terms of (IO) see [Z] and in particular [IO]. Special attention must he given to the correct 
inclusion of the respective self-terms. 

An approximate expression in closed form for Q2 can be obtained for a large class 
of crystals defined by the following properties. (i) The shucture possesses only two 
symmehically distinct lattice sites. (i) Only one ion type occupying these sites is polarizable 
and the effective polarizability of this ion type is not strongly anisotropic. We will give a 
precise mathematical definition of what we mean by effective polarizability in the following 
discussion. 

Examples of crystals belonging to this class are quartz (SiO2) and sapphire (A1203). 
The analytic calculation of the trace of the irregular part of D, for the above defined 

class of crystals, is made possible by the fact that the sums over mauix elements occurring 
in the course of the calculation can be related to the self-terms of the respective matrices. 
The self-terms in turn can be expressed in closed form as functions of the model parameters. 
The details of this procedure are rather involved and are therefore given in an appendix. 

The final result is summarized in (11): 

or in a more compact form 
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The quantities < and p have already been defined in (9); rp  denotes the number of polarizable 
ions per primitive cell. The term a.fi can be considered an effective polarizability and its 
connection with the free polarizability is given by 

H Schober and D Srrauch 

a,ff := (a-' +,#I-' ( 13a) 

with 

@ := fTr(Y-'[Fr(K, K )  + [Ycx]o(K, ~)]v-').  (13b) 

The (3 x 3 )  matrices F;(K. K )  and [YcXlo(~, K )  are the self-terms of the short-range and 
Coulomb shell-core interactions respectively. 

The parameters v and y are simple scalar functions related to the trace and quadratic 
norm of the self-terms of the shell-core interactions respectively (see (A37) and (A52)): 

where Z, Y and X are the ionic, shell and core charge of the polarizable ion. Note that 
the ions are labelled such that the ones belonging to the non-polarizable type come first; 
U and y can easily be calculated knowing the Coulomb coefficients and short-range force 
constants. We want to point out that this is a necessary condition for the later application 
to concrete crystals. 

When deriving expression (II), we have substituted the matrix YN-'Y, within the 
subspace of the polarizable ions, by cr,ff multiplied by the unit mauia: 

[YN-'YI,B(K, K ' )  ++ (Y~f f&p&d.  (14) 

Expression (1 1) is therefore only exact if the mauix 

N = K + Fr + [YCXIo (15) 

is isotropic in this subspace, as in this case 

[YN-'Y]&(K, K') = acff8ap8xx'. (16) 

As long as the polarizability of the hypothelicdly free ions a is small and not anisotropic the 
maaix N will be dominated by the isotropic matrix K and condition (16) can be assumed 
fulfilled in all cases. With increasing a the off-diagonal elements of N become more 
important and (11) will deviate more and more from the exact numerical values. 

We now investigate briefly the single contributions to a. The fmt  conhibution is 
identical to the one we obtained for rigid-ion models and just describes the unscreened 
Lo-TO splitting arising from the ionic charges. The second term is, due to its sign, a pure 
screening term, i.e. reducing the L G T O  splitting. It depends only on the ionic charge and 
the effective polarizability. 

The thud contribution differs from the second only in that the factor rp/v in the 
nominalor is replaced by 2u. In contrast to rp/u, which is a constant wholly determined by 
the crystal smclure. v depends on the interaction potentials'through the short-range part of 
[p + XCYIo. The long-range pan gives only a constant contribution to U, determined by 
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the crystal structure through the Coulomb coefficients. If we compare. different models for 
the same crystal, giving all comparable descriptions of the dispersion curves, it is reasonable 
to assume that the sum of the short-range forces in between the core of an unpolarizable 
ion and the shells of the polarizable ions scales approximately with the corresponding sum 
of the Coulomb forces, i.e. with 2 .  Y. This is justified by the argument that short-range 
and Coulomb forces are more or less independent of each other as they have a different q 
dependence. In this case U does not depend on the model but only on the crystal structure 
and the ratio of short-range to long-range forces. The sign of U is not generally positive, 
so that we can not say U priori whether we are dealing with a screening or anti-screening 
contribution, i.e. with decreasing or increasing Q*. 

The above argument can be taken over directly for the final contribution. It implies 
that y also is more or less independent from the specific model-setup. The main difference 
compared to the preceding contributions is its more complicated dependence on a. Besides 
that, it stands out due to its sign: y .  being always positive, has an anti-screening effect, i.e. 
it increases QZ. 

5. Scaling of ionic charge with polarizability 

Besides constants depending on the details of the crystal s m c t m  a’, as given by (1 1). is 
determined on the one hand by 6 ,  U and y and on the other hand by the polarizability a 
and the ionic charge Z .  As outlined above, U and y cannot be changed appreciably without 
changing the description of the dispersion curves as they are determined by the ratio of 
short-range to Coulomb interactions in the system. Treating 6, U and y as parameters and 
not as variables we invert 

(17) QZ = Q2(2. a; 6 ,  U, y )  

to get 

z = Z(O1: Q:xp. 6 ,  U. y )  = 2(a) (18) 

where Qb, denotes the experimental value of a’. This means that we are looking for the 
pairs of 2 and 01 which give for a special set of 6 ,  U, y the Q’ determined by experiment. 
As (18) involves only quantities defined by the crystal structure and the general ratio of 
short-range to Coulomb interactions it explains the high correlation of Z and a observed 
when fitting shell models to experimental data. Examples of Z(a) are given in figure 2. 
The calculation is based on the structure of or-quartz [ I ]  and the values of 6, v and y are 
the ones found for the shell-models of cu-qumz (see table 1). All the curves show a more 
or less extended region where 2 scales linearly with a. The slope is given by the derivative 
of Z(or) at 01 = 0: 

(19) z’(0) = $z(o)[(4n/u)rp i- 2uI. 

6. Connection with the effective charges 

Using the dielectric function approach the irregular part of the dynamical matrix for a cubic 
system can be expressed in the form [ll] 



Figure 2. Z(a) for selected values of h e  pameten 6 
U and y ,  The parameters used for curve correspond 
to the lattice dynamical shell models of cl-quartz Ill. 
T h e  region close to the ohpin is shown enlarged in the 
lower figure. 

It has been shown by Sham [I I] that the components of the charge tensor fulfill the followhg 
sum rule, which also constitutes a necessary condition for the existence of the acoustic 
branches: 

Z$(K) = 0. 
K 

Calculating the mace of (20) using (21) we get for binary crystals 

with Z'" the effective charge of the polarizable ion. 

binary systems. 
As S2 and E are known experimentally (22) immediately yields the effective charge for 

For more complicated smctures where <a,+ is not isotropic (22) has to be replaced by 

Although the sum rule holds also for these crystals the mace cannot be expressed in the 
simple form of (22) due to the off-diagonal elements of the effective charges. 

7. High-frequency dielectric constant 

As the effective charges depend in a complicated way on the model parameters, ('22) cannot 
be used to determine the relation of the high-frequency dielecvic constant €(CO) and the 
model parameters. As the high-frequency dieleceic tensor for a shell model is  given by 
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it can, however be calculated directly, analogous to Q'. If the substitution (14) is a valid 
approximation, this leads us to 

&Q)= 1+-rpaeu. 4s 
V 

In the case of a cubic diatomic system with no short-range forces acting upon the shells 
the effective polarizability is given by aetf = (a-' - 4n/3v)-'.- Assuming $at the shell 
charge Y is equal to the ionic charge Z. (25) reduces to the well known Clausius-Mossoni 
relation: 

€(m)-l  437 
€(oo)+2 3v  

= -ff. 

As the effective polarizability is a scalar it is immediately obvious from (25) that in 
our approximation the dielectric tensor has to be isomopic. The experimentally determined 
anisoeopy of E ,  must therefore be very small for ow results to be applicable. A zero 
anisotropy of E,, on the other hand, is not sufficient to conclude that (14) is valid. 

8. Application to quartz 

We will now apply the above developed formalism to the lattice dynamics of a-quartz. a- 
quartz is a particularly good candidate as its dispersion relations can be very well described 
by various shell models differing appreciably in their short-range as well as Coulomb 
interactions; 

In table 1 we list in columns 2 6  the values of U, $. y together with the charge and free 
polarizability of the models. The rest of the parameters for the models SM(1) to SM(4) 
can be found in [l]. In columns 7 and 8 we compare the value of Zp(a) as detennined 
by using the analytical expression (11) to the exact value of ZF(S2) as determined after 
diagonalization of the dynamical matrix. ZN(n) is defined through (9), i.e. it is the charge 
required to yield Q2 in the case of a rigid-ion model. In column 9 we give the value of 
€(CO). 

Table 1. Parameters for the models SM(1) to SM(6). 

Model u(&.) -~  y ( . k 3  Z(e) a(AP .~ Zp(e) Z,R'(e) wo) 
SM(1) 0.21 -0.04 0.44 1.49 0.88 1.04 1.06 1.62 
SM(2) 0.23 0.08 0.44 1.85 1.39 1.17 1.12 1.96 
SM(3) 0.22 . 0.07 0.41 1.79 1.20 1.15 1.14 1.85 
SM(4) 0.22 0.09 0.41 , 2.00 1.86 1.17 1.13 2.36 
SM(5) 0.29 0.28 0.66 1.32 0.64 ~ 1.04 1 .08 1.39 
SM(6) 0.22 0.07 0.42 1.80 1.22 1.15 1 .'I 4 1.86 

By comparing columns 7 and 8 we realize that the analytical results are in close 
agreement with the numerical ones. This means that the error induced by (14) is very small 
and the results of sections 4-7 can be fully applied to the lattice dynamical investigations 

Conceming the parameters U, $, y we see that they are more or less model-independent 
as expected. Concennating on U this implies that for all our models the short-range and 
Coulomb interactions between oxygen shells and silicon ions always contribute in the same 
ratio cu to the trace of the self-term of the oxygen shell. This entails a strong correlation of 

of ff-quartz. 
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the product of ionic charge Z times shell charge Y on the one hand, and the longitudinal 
and transverse force constants in between silicon ions and oxygen shells on the other hand. 
Knowing the Coulomb coefficients for the quartz smcture and averaging over all OUT models 
we get cy = -1.92 f 0.05. 

The fact that U and y are more or less independent of the model and the rather small 
value of $5 explains the linear scaling of the ionic charge Z with the polarizability of the 
free ion a (see hgure 1) as outlined in section 5. The slope of Z(a) is correctly predicted 
by (19), using the experimental value for ZN = 1.15e and the value of cv given above. 
This means that the LO-To splitting in a-quartz is reproduced correctly only by shell models 
having a well defined Z(a) determined basically by the constant cv. All other parameters 
have a minor influence on CL’. The interactions between the oxygen shells, for example. do 
not enter at all the analytic expression derived for Q2. 

The investigation of the Lo-To splitting alone is insufficient to predict the values of the 
ionic charge 2 and polarizability 01. If we require, however, that the model also comes up 
with the correct value for the high-frequency dielechic constants we can determine both 
the ionic charge 2 and polarizability a through (12) and (25). With the exception of E ( W )  

for a = 1.86A , (25) is very well satisfied by the dielectric constants derived from ow 
models, as can be seen in figure 3, even if we replace aeff by a. The latter is not surprising 
given the small value of @ (see (13)). Using (25) in conjunction with the experimental 
value for E ( W )  = 2.37 €121 we predict that the effective polarizability aeff in a-quartz has 
a value of 1.8 f 0.2A3. Taking the average value for 6 this corresponds to a polarizability 
a of 2.0 f 0.28, . Having determined the value of aeff we can use (12) to predict the 
charge of the oxygen ion. The value obtained lies very close to 2e. It is actually the 
above analysis leading to model SM(4) that we consider to best describe the overall lattice 
dynamics of a-quam while at the same time reproducing the experimental value of the 
dielectric constant. 

H Schober and D Sirauch 

3 

3 

E ~~~! 1.6 

1.4 

1.2 

1 .o 
Figure 3. 6z1(oo) as a hmction of rrdf (full 
circles) and of U (open squares) for the shell 
models of a-quam [l]. P ( c f . ~ )  according to 
(25) is given by the full linc. 

2.5 0 0.5 1 1.5 2 
araei, [ A  1 

Our results do not suppori the inclusion of an anisotropic free polarizability into our 
models as this would in most cases lead to an anisotropy in the dielecnic tensor which is not 
observed experimentally. In fact, no substantial improvement of the fits could be achieved 
by allowing for an anisotropic free polarizability. 

9. Application to sapphire 

In the case of sapphire (A1203) all the shell models we fitted to the experimental dispersion 
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curves gave about the same value for the ionic charge. Z = 1.510.1 e, and free polarizability, 
a = 0.7 1 0.1 ti3 [13J. These models do not, however, reproduce the experimental value of 

By sacrificing a best fit to the dispersion curves we optimized various models 
with the value of the free polarizability of the oxygen ion a fixed in between 0.7A3 
and Z.OA . Investigating these models, we find that the anisotropy of the self-term 
C(K. K )  + [YCXJ~(K. K )  is very small for all of them and the parameters U and y entering 
(12) are practically zero. The analytical results of sections 4-7 are therefore fully applicable 
to sapphire. The zero values for U and y imply that the short-range conhibutions to the 
self-term arising from the interactions in between aluminium cores and oxygen shells cancel 
the corresponding Coulomb conhibutions. It should be noted that this cancellation is not 
required by symmetry and therefore reflects the distribution of forces acting in the crystal. 
Using the terminology of the preceding section, we get c, = -1.0 f 0.05 for ,sapphire in 
comparison to cv = -1.921 0.05 for a-quartz. As U is vanishing, q4 is solely determined 
by the Coulomb coefficients (6 = 0.2955XjY) and therefore negative as long as the core 
charge X of the oxygen ion has the opposite sign of the shell charge Y. This means 
according to (13) that the effective polarizability ay,f is larger than the free polarizability a, 
in c o n m t  to what we have found in a!-quartz. 

As can be seen from figure 4, (25) is well satisfied by the dielecnic constants ~(cu) 
calculated from the models. In order for the models to reproduce the experimental value 
of ~(b)), the effective polarizability asff must be close to 2.7 f 0.2A3. Inserting this result 
into (14) and using the expefimentally determined value of P2 we get for the ionic charge 
of the oxygen ion in sapphire 2 = 2.0 f 0.2e. As the shell charge for all our models 
Y = 2.9 f O.le we can also determine the free polarizability of the oxygen ion required 
to reproduce both the right magnitude of the Lo-To splitting as well as the right dielectric 
constant to be a = 1.9 

Gr(m) = 3.2 and eZz(m) = 3.1 [14]. 
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Figure 4. +(w) a9 a h c t i o n  of a& for 
the shell models of sapphire 1131. P f a r . ~ )  
according to (25) is given by the full line. 

The results for the free polarizability and the ionic charge of the oxygen ion in sapphire 
are identical to the ones obtained for a-quartz. The large difference in the dielectric constants 
of the two crystals is solely due to the different structures and short-range interionic 
potentials. These results compare also very weU with other oxides, like the perovskites 
(see [15] and references therein). 
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10. Conclusion 

We have shown that an analytical treatment of the LO-TO splitting and the high-frequency 
dielectric constants in complex crystals like a-quartz and sapphire is possible and constitutes 
a powerful tool to extract information about charges and polarizabilities as well as the 
correlations of the shell model parameters. This information is the more valuable as it is 
not based on a single lattice dynamical model but on their common characteristics. 

It turns out that the self-term associated with the shell-core interactions plays the 
dominant role in the determination of the LO-TO splitting. 

In this way we have found that both in sapphue as well as in a-quartz the ionic charge 
of the oxygen ion is very close to 2e paired with a free polarizability of about 1.9A . 
The charge as well as the polarizability are strongly correlated with the model parameters 
entering the self-term of the core-shell interactions and an analytical expression for this 
correlation is given. The results are based on the assumption that the lattice dynamics of 
quartz and sapphire can be described by shell models, however, without reference to any 
particular model. 

H Schober and D Strauch 
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Appendix. Derivation of (11) 

In order to facilitate notation we rewrite the dynamical mahix given in (IO) in the form 

D = (ZC'Z + R) - (T+ ZC*Y)[K + S + YC*Y]-'(T + ZC'Y)' (AI) 

where we have redefined the matrixes R, T and S by including the regular part of the 
corresponding Coulomb interactions: 

R := R +  zcz 
T := T + XCY 

S:=S+YCY 

where C denotes the regular and YC' the irregular part of the Coulomb matrix. The gauge 
we choose such that the regular part of the dynamical matrix is given by 

D"g = R - T(K + S)-'T+ (A2) 

as only in this Case is (3) is identical to (4). Instead of treating the irregular part of the 
dynamical mahix as a whole we split it up into three parts defined as follows: 

D' := ZCZ - (ZC*Y)[K f S + YC*Y]-'(YC*Z) 

Dln := -T[(K + S + Yc"Y)-' - (K + S)-']T+. 

(A3a) 

(A3b) 

(A3c) 

DU ._ .- -T[K + S + YC*Y]-l(YC*Z) + HC 
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The calculation of the trace of these expressions can generally not be done analytically as 
it involves the inversion of (K+S+YC*Y). We wilI show that under certain conditions in 
order to calculate the trace of expressions (A3) the matrix (K+S+YC*Y)-' can simply be 
replaced by (N + YC*Y)-' and that the matrix (N + YC*Y)-I can be calculated in closed 
form: 

(A4) N = K+Fy + [YCX], 

with 

where FY denotes the self-term of the short-range interactions between shells and cores. 

(K + S + YC*Y)-' = (N  + Ss + YC*y)-' 

The starting point of our calculations is the identity 

= (N + YC*Y)-' - (N + YC*Y)-'SS[N + YC'Y + Ss]-' ( 4  

with 

Ss := S - FY - [YCXIo. (A7) 

Let us Iirst investigate the matrix (N + YC*Y)-' . As we are treating only the case of one 
polarizable ion type (N + YC*Y)-' is of the form 

(N + YC*Y)-' = (: 2-1) 

with M-' being a mauix of rank rp. It is therefore sufficient to consider only M-I. If the 
terms in (A4) are isotropic, and if we do not include an anisotropic free polarizability in 
our models, then 

where we denote the unit mauix of rank I by E,. 
As the elements of Y c" 

do not depend on K it is straightforward to calculate M-': 

with 

(A12a) 

(A12b) 

( A W  
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leading to 

H Sctwber and D Strauch 

( A 1 3  

If N is nor o f  the form (A9), the result can be generalized in such a way that the form 
where for convenience we have chosen a coordinate system such that 6 = 1 / 8 ( 1 . 1 ,  1). 

of M-' is preserved, i.e. M-' can still be written as 

M-I = X +  H ( ~ 1 4 )  

with all the elements of the (3rp x 3rp)-matrix H being identical and with X being diagonal 
in K .  The (3 x 3)-submatrices of x are, however. no longer multiples of the unit matrix as 
is the case for expression (A13). 

We will use (A13) to calculate the trace of D', which for this purpose we transform as 
follows: 

D' = ZC'Z - (ZC*Y)(N + YC'Y)-'YC'Z 
+ (ZC*Y)[N + YC*Y)'-'SS[N + YC*Y + Ss]-'YC*Z. ( ~ 1 5 )  

As the elements of YC* do not depend upon K the product YC*A is zero for all (3r x 3r)- 
matrices A fulfilling the condition 

A,B(K. K ' )  = 0 
U'= I 

Therefore 

YC*YSS = 0. 

In order to apply (A17) to (A15) we have to commute (N + YC"Y)-' either with (zC*Y) 
or with 9. As YC*Z is of the form 

YC'Z= ( 0 0  ) 
61 B2 

with both 61 as well as 8 2  not equal to zero it does not commute with (N + YC*Y)-'. We 
are therefore obliged to calculate the commutator 

(-41% CSN = [ss, (N + Yc*Y)-l]. 

As 
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where Ss commutes with N-!, if SIs commutes with M-I. Using (A14), and knowing that 
H commutes with any symmehical matrix, we get 

CSN = [SS, XI. (A21) 

As Ss depends on the specific model used CSN in general is only zero if X is a multiple of 
unity due to the symmetry of the crystal. In all other cases we get a result in closed form 
only by working in the following approximation. 

Let 

As a:; does not depend on K 

with an a r b i w  K chosen among [r - rp. r ] ;  @ is given by 

@:=fTr(Y- I I F r (K ,  0 K )  -k [YC.X]O(K, K)IY-'). 

By replacing N with YaSjY the mauix (N + YC*v)-l is given by expression (A13) if we 
identify x with acii. In principle we can always choose an anisotropic free polarizability 
a:&) such that 

Ya'-'Y + N = Ya;,LEs,Y. ( A 2 3  

For this kind of model the analytical expressions we are going to derive are correct. 
Summarizing our results so far, we have shown that the third term of (A15) 

(ZC'Y)(N + YC*Y)-'SS[N+ YC"Y -t SsJ-'YC*Z (A26) 

vanishes if CSN is zero. As the first term 

is known explicitly we are left with the expression 

(ZC'Y)(N + YC*Y)-'YC*Z. 

As in the chosen coordinate system the elements of C' are all identical to a (A10) 

C A C *  = a2yH 

with 

Taking into consideration the special form of YC"Z (AB)  as weU as the atomic masses we 
get for ( A B )  with the help of (A13) and (A29) 
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Calculating the mace yields 

The second contribution to the irregular part of the dynamical manix. i.e. (A3b). in an 

6433) 

Calculating the product of the two matrices to the right and using of (A13) and (A18) we 

(A34) 

analogous fashion to (A3a) can be cast into the form 

D” = -T[N + YC*yl-’(YC*Z) + HC. 

get 

[(N f Y c * Y ) - ’ ( Y c * z ) ] @ ( K ,  K ‘ )  = n ( K ) Z ( K ’ ) & z 8 B r  

with 

where we have changed the coordinate system such that 
into (A33) leaves us with 

= i. Equation (A35) substituted 

As we are only interested in the nace of D” it is sufficient to cany out the summation in 
(A36) for the diagonal elements. This task is again facilitated by the translational symmetry 
of the system. Let us first investigate the case when K represents an ion of type I. As the ions 
of type 1 are non-polarizable they possess no shells and the sum in (A36) involves only the 
interactions of the cores of type I with the shells of type II. The sum in (A36) is therefore 
proportional to the negative self-term of F + XCY for this special K .  In the case of K 

representing an ion of type I1 there are contributions to the sum from the interactions of the 
corresponding core with all the shells, plus the interactions of the corresponding shell with 
the rest of the shells. But as in this case the summation also covers the diagonal element 
T m m ( ~ ~ )  all the off-diagonal contributions to the sum are cancelled by the corresponding 
ones of the self-term [P + VCXIo. Only the conhibutions to [F‘ + YCX]o arising from 
the interaction of the shell K with the cores of all the non-polarizable ions remain. 

Tu.&, K‘) 

As the trace 

T r c  W, K’) = 
x‘ X’U 

is invariant under orthogonal transformations it depends only on the ion type but not on K. 
This allows us to define a constant U such that 

(A37a) 

1 - T“(K. K‘)  =: ZYeZw K E [ r  - rp + 1, r l .  (A37b) 
3 X ‘ U  
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Here 2 and Y are the ionic and shell charge of the polarizable ion respectively. The 
definition of U through (A37a) and (A37b) is unique due to the identity 

. 
LO-TO splitting in complex binary crystals 

r-+ I r-7p 

*.=I x'=r-rp+l z=r-rp+l *.'=I 
~ T # ~ ( K , K I )  = T ~ ~ c = . K ' ) .  (A37c) 

Averaging over the Cartesian coordinak leads to the final result 

In order to calculate the thii contribution to S2 

P = T[(K + s + YC*Y)-' - (K + s)-w 
we use an identity analogous to (A6): 

(K+S+YC*Y)-' = (N+SS+YC*Y)-' = N-' -N-'(SS+YC*Y)[N+YC*Y+SS]-'. 

~ 4 4 0 )  

Equation (A6) applied to (Am) gives 

(K+S+YC*Y)-' = -N-'(SS +YC*Y)(N+YC*Y)-' f N-'(SS +YC*Y)(N+YC'Y)-' 
x SS[N + YC'Y + Ss]-' + N-'. ( ~ 4 1 )  

If CSN is zero this expression can be simplified using (A17): 

(K f S + YC*Y'-' = -N-'(SS + YC*Y)(N + YC*Y)-' 
+ N-'SS(N + YC'Y)-'SS[N +YC*Y + Ss]-' + N-'. (A43 

Applying again (A6) we find 

(K + S + YC*v)-' = -N-'(YC*Y)(N + YC*Y)-' + N-'SS[N + YC*Y + Ss]-' + N-'. 

(A43) 

Transforming the second part of (A43) according to 

(N + YC'Y + Ss)-' = (N -+ Ss)-' + [(N + YC'Y + Ss)-' - (N + Ss)-'I (A@) 

and using 

(N + YC'Y + Ss)-' - (N + Ss)-' = -(YC*Y)[(N + SS)(N 4- YC*Y + Ss)]-' 
together with (A17) leads to 

N-' +N-'SSIN+YC*Y+SSI-' =N-' -N-'SS[N+SS]-' =(N+SS)-' =(K+S)-'. 

(A43 

(A4@ 

Therefore 

(K + S + YC*W-' = -N-'(YC*Y)(N + YC*Y)-' + (K +S)-' (A43 
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substituted into (A39) gives 

H Schober and D Strauch 

Dm = -TN-'(YC*Y)(N + YC*Y)-'T+. 

with now 

For the elements of the matrix (A48) we get in the coordinate system with Q = i 

The terms arising when calculating the mce of (A51) are therefore proportional to 

where we have again averaged over three orthogonal directions; y~ and yz do not depend 
on K as the sums on the right are nothing else but the squares of the canonical norm of 
(3  x 3) matrices and are therefore invatiant under orthogonal transformations. Note that 
the ratio of jq to yz depends on the specific setup of the model. To get a formally similar 
result to Q and S2.1, we define y = f ( y l ,  yz) such that 

Summarizing the partial results (A32), (A38) and (A53) we get the E d  expression 

References 

[ I ]  Schobcr H, Slrauch D. Nulzel K and Domer B 1993 1. Phys.: Condenr, Marrer 5 6155 
I21 S i a  S K 1973 CRC Crir. Rev. Solid Slate Sci. 4 
[3] Rasenrtcck H B 1962 Phys. Rev. 129 1959 
[41 Kumsawa T 1961 J .  Phys. Soc. Jopan 16 1298 
[5] Ccchran W and Cowloy R A 1962 3. Phys. Chem. Solidi 23 447 
[6] Seinasuke 0. Toshihim A and Keiei K 1977 Phys. Rev. B 16 1717 
[7] Luwvrky G, Martin R M and Buntoin E 1971 Phyr. Rev. B 4 1367 
[8] Scou I F 1971 Phyr. Rev. B 4 1360 
[9] Gervais F I973 Solidsate Con".  18 197 

[IO] Eckold G. Stein-Arsic M and Weber H I 1986 Bmichl der KFA. JZich 366 
[ I l l  Sham L J 1969 Phys.Rev. 188 1431 
[I21 Gewais F and Piriou B 1975 Pkys.Rev. B 11 3944 
I131 Schober H. Stmuch D and Domer B 1993 to be published 
[ 141 Barker A S Ir I963 Phys. Rev. 132 1474 
[I51 Kress W. SchrCder U. Prade I. Kulkami A D and deWelte F 1988 Phys. Rev. B 38 2906 
1161 Eckold G. Stein-Arsic M and Weber H I 1987 1. Appl. Cryst. 20 134 


